'02 東京理科大学

解説

(1)では、上から見た場合と下から見た場合の位相のずれ方の違いを考える。(2)では、位相の他に、波長の変化にも注意する。

$$R^{2} = (R - d)^{2} + r^{2}$$

$$r^{2} = R^{2} - (R - d)^{2}$$

$$= 2Rd - d^{2}$$

$$= 2Rd$$

$$R-d$$
 R
 P_1
 d
 P_2

ゆえに
$$d=\frac{r^2}{2R}$$

 P_1 での反射では位相のずれはなく、 P_2 での反射では π のずれが生じるので、強

めあう条件は
$$2d = \frac{r^2}{R} = (2m-1)\frac{\lambda}{2}$$
 …… (r)

弱めあう条件は
$$\frac{r^2}{R} = m\lambda$$
 ……(イ)

(ウ), (\mathbf{T}) 反射しないで透過する光線には位相のずれはない。点 \mathbf{P}_1 で反射し、さらに点 \mathbf{P}_2 で反射してから透過してくる光線では、 $\mathbf{2}$ 回の反射のいずれでも位相が π だけずれる。したがって、強めあい・弱めあいの条件は (\mathbf{P}) , (\mathbf{f}) の場合と逆になる。

強めあう条件は
$$\frac{r^2}{R} = m\lambda$$
 ……(ウ)

弱めあう条件は
$$\frac{r^2}{R} = (2m-1)\frac{\lambda}{2}$$
 …… (エ)

- (2) (オ) 水の屈折率はガラスの屈折率より小さいので、位相のずれ方は(1)の場合と同じである。水中では波長が λ より短くなるから、環の半径は小さくなる。…… ④
 - (D) 油の屈折率はガラスの屈折率より大きいから,上から見た場合は点 P_1 での反射だけで位相のずれが生じ,下から見た場合は点 P_1 , P_2 いずれの反射でも位相のずれはない。したがって,上から見た場合も,下から見た場合も明暗は液を入れないときと同じ。また,波長が短くなるので,環の半径は小さくなる。…… ④

講評

光の干渉のニュートンリングの問題.内容も非常に基本的で、教科書発展レベル.特に くせのある部分もなく、素直な問題.内容の確認にちょうど良いレベル.近似のやり方な どをきちんと押さえておこう.